官方服务热线

您当前所在位置:首页 > 汽车百科 > 问题解答 > 正文

小乐数学科普:放牧山羊问题得到精确解(牧羊人放羊的数学题目)

来自:中汇名车 日期:2023-01-07 16:20:02 手机链接
小乐数学科普:放牧山羊问题得到精确解(牧羊人放羊的数学题目)

原文:量子杂志Quanta Magazine

作者:Steve Nadis 2020-12-9

译者:zzllrr小乐 2020-12-10

这是一个听起来很简单的问题:想象一下围了一亩草地的圆形篱笆。如果您将山羊绑在栅栏的内部,您需要用多长的绳索才能使动物恰好进入半亩的土地?

听起来像是高中几何,但数学家和数学爱好者已经以各种形式思考这个问题已有270多年了。尽管他们已经成功解决了一些问题,但放牧山羊”这个难题拒绝给出除模糊、不完整的答案以外的任何内容。

没有人知道基本的原始问题的确切答案”,美国海军学院的名誉数学家马克·梅耶森(Mark Meyerson)表示,只有近似解。”

但是,今年早些时候,一位名叫Ingo Ullisch的德国数学家终于取得了进步,找到了该问题的第一个准确解,尽管是一种笨拙,对读者不友好的形式。

[这]是我所知道的第一个明确的表达式,” 卡内基梅隆大学的数学家迈克尔·哈里森(Michael Harrison)说:这当然是进步。”

Ullisch坦然说,它当然不会颠覆教科书或带来数学研究革命,因为这个问题是一个孤立的问题。它与其他问题无关,也不包含在某个数学理论中。” 但是,即使是像这样的有趣难题,也有可能引起新的数学思想,并帮助研究人员提出解决其他问题的新颖方法。

这种类型的第一个问题发表在1748年,在伦敦的期刊《女士日记:或者,女人的年鉴》中,该出版物承诺将展示艺术和科学方面的新改进,以及许多不同的细节”。

最初的场景涉及绑在绅士公园的一匹马。” 在这种情况下,马被绑在圆形围栏的外部。如果绳索的长度与围栏的周长相同,那么马匹可以喂食的最大面积是多少?此版本后来被归类为外部问题”,因为它涉及到在圈外而不是圈内放牧。

《女性日记:或者,女人的年鉴》 1748年封面的照片

放牧山羊问题的一种形式首先出现在1748年的 《女士日记:或女人的年鉴》中。

普林斯顿大学图书馆特别藏书

答案出现在《日记》的1749年版中。它由希思先生”(Mr. Heath)提供。希思依靠试验和对数表”以及其他资源来得出他的结论。

希思的答案-一条160码的绳索对应76,257.86平方码-是一个近似值,而不是精确的解决方案。为了说明这种差异,请考虑方程x^2 − 2 =0。可以得出一个近似的数值答案x = 1.4142,但这并不像精确解x = √2那样精确或令人满意。

该问题于1894年在《美国数学月刊》的第一期中重新出现,并重铸为最初的围栏放牧”问题(这次没有提及农场动物)。Ullisch解释说,这种类型被归类为内部问题,并且比外部问题更具挑战性。在外部问题中,从圆的半径和绳索的长度开始,然后计算面积。您可以通过集成解决它。

Ullisch说:逆向操作,从给定的面积开始,然后询问哪些输入产生该面积,就变得更加困难了。”

在随后的几十年中,《月刊》发表了有关内部问题的变化形式,主要涉及马匹(至少在一个例子中是骡子),而不是山羊,其围栏为圆形,方形和椭圆形。但是在1960年代,出于神秘的原因,山羊开始在放牧问题文献中取代马匹,尽管数学家马歇尔·弗雷泽(Marshall Fraser)认为山羊可能过于独立以致无法束缚自己”。

1984年,弗雷泽(Fraser)发挥了创造力,将问题从平坦的牧草领域带入了更广阔的领域。他计算出,当n达到无穷大时,允许山羊在n维球体正好一半体积内放牧,这条绳子需要多长。梅耶森(Meyerson)在争论中发现了逻辑上的缺陷,并于当年晚些时候更正了弗雷泽(Fraser)的错误,但得出了相同的结论:随着n接近无穷大,束缚绳长度与球体半径之比接近√2。

正如梅耶森所指出的那样,在多维空间而不是在草地上,这种看似更复杂的解决问题的方法实际上使查找解变得容易。在无限的维度中,我们有一个明确的答案,而在二维中,没有如此明确的解。”

放牧山羊的问题有两种形式,但通常都是从绑在圆形栅栏上的山羊开始的。内部版本询问如果我们希望山羊的皮带正好进入封闭区域的一半,那么它应该多长。外部版本询问在给定的绳索长度和给定的围栏周长条件下山羊可以接触多少外部面积。(在这种情况下,绳索的长度等于围栏的周长。)

1998年,也是海军学院数学家的迈克尔·霍夫曼(Michael Hoffman)在一个在线新闻组中遇到了一个外部问题的例子之后,又朝另一个方向扩展了这个问题。该版本试图量化绑在圆形筒仓外部的公牛的可用面积。这个问题引起了霍夫曼的兴趣,他决定将其推广到不仅是圆的外部,而且还可以推广到任何平滑的凸曲线,包括椭圆甚至不闭合的曲线。

霍夫曼说:一旦看到一个简单情况下出现的问题,作为数学家,您通常会尝试看看如何将其推广。”

在数学中寻找新的答案的方法通常很有价值,甚至可以解决以前已经解决过的问题。

——马克·迈耶森(Mark Meyerson),美国海军学院

霍夫曼考虑了皮带(长度为L)小于或等于曲线周长一半的情况。首先,他在连接公牛皮带的点上画一条与曲线相切的线。公牛可以在被切线界定的面积为πL^2/ 2的半圆区域吃草。然后,霍夫曼为切线和曲线之间的空间设计了一个精确的积分解,以确定总的放牧面积。

最近,Lancaster兰开斯特大学的数学家格雷厄姆·詹姆森(Graham Jameson)与儿子尼古拉斯(Nicholas)一起详细研究了内部问题的三维情况,因为它受到的关注较少。由于山羊无法在三个维度上轻松移动,詹姆森父子在其2017年的论文中将其称为鸟类问题” :如果将鸟类拴系在球形笼子内部的某个点上,拴绳应限制多长能让鸟够到笼子一半的体积?

老詹姆森说:三维问题实际上比二维问题更容易解决,”两人得出了精确解。但是,由于答案的数学形式(詹姆森称其为精确(尽管太可怕了!”))对初学者来说是令人望而生畏的,因此他们还使用了近似的技术来为鸟类操纵者”的系绳长度提供数值答案。玩鸟者可能更喜欢。”

不过,自1894年以来,直到Ullisch今年发表论文之前,二维内部问题的精确解始终难以捉摸。Ullisch于2001年还是小孩时,第一次从亲戚那里听说山羊问题。在获得明斯特大学博士学位后,他于2017年开始从事这项工作。他想尝试一种新方法。

那时众所周知,山羊问题可以简化为单个超越方程(按定义是说,该方程包括正弦和余弦之类的三角项)。由于许多超越方程是难解的,因此可能会造成障碍。例如,x = cos(x)没有精确解。

数学家Ingo Ullisch穿着灰色西装和红色领带的照片

Ingo Ullisch通过应用称为复分析的数学分支,为放牧山羊问题找到了精确解。

由Ingo Ullisch提供

但Ullisch以这样的方式设置问题,可以得到一个更便于处理的超越方程:sin(β) - β cos(β) - π/ 2 = 0。虽然这个公式也似乎难以驾驭,他意识到可以使用复分析方法来解决这个问题。这是一门数学分支,将分析工具(包括微积分的分析工具)应用于包含复数的表达式。复分析已经存在了多个世纪,但据Ullisch所知,他是第一个将这种方法应用于饥饿山羊的人。

通过这种策略,他能够将他的超越方程

注:中汇名车( www.ogshifu.cn )提醒:[ 小乐数学科普:放牧山羊问题得到精确解(牧羊人放羊的数学题目) ] 文章仅为流传信息,交流学习之目的,其版权均归原作者所有,以上内容来源于网络,不代表中汇名车立场,如有侵权,请联系小编删除!

本文链接:https://www.ogshifu.cn/show.php?cid=43&id=17349

热门资讯 尽在中汇

每日推荐 精选车型

相关文章

预约看车送好礼!

或致电我们,让我们为您服务 上班时间 9:00-18:00